Metalloproteinase Adamts16 Is Required for Proper Closure of the Optic Fissure.
نویسندگان
چکیده
Purpose Coloboma is a sight-threatening congenital eye disease caused by a failure in optic fissure (OF) closure. The aim of this study was to investigate the role of Adamts16, a metalloproteinase, in OF closure. Methods RNA in situ hybridization was used to examine the expression of Adamts16 in developing mouse and zebrafish eyes. Morpholino knockdowns were performed to study adamts16 function during zebrafish eye development. Additionally, immunofluorescent staining, RNA in situ hybridization, bromodeoxyuridine (BrdU) labeling, TUNEL assays, and high-throughput sequencing were used to examine altered cellular and molecular events in adamts16-morphant optic cups (OCs). Results Adamts16 is expressed at the edges of the closing OF in both mice and zebrafish eyes. Zebrafish adamts16 knockdown resulted in coloboma formation. In adamts16-morphant eyes, the basement membrane failed to disassemble at the closing OF edges, OC cells exhibited decreased proliferation and increased apoptosis, and fibroblast growth factor 8 (fgf8) was ectopically upregulated in the OC. Conclusions adamts16 is required for proper OF closure in zebrafish eyes. adamts16 controls OF closure possibly through the combined functions of degrading the basement membrane at the closing OF edges, promoting cell proliferation and survival, and restricting fgf8 expression. Our study linked a metalloproteinase to OF closure, which may facilitate future etiologic studies on human coloboma cases.
منابع مشابه
Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling.
The development of complex organs such as the eye requires a delicate and coordinated balance of cell division and cell death. Although apoptosis is prevalent in the proximoventral optic cup, the precise role it plays in eye development needs to be investigated further. In this study, we show that reduced apoptosis in the proximoventral optic cup prevents closure of the optic fissure. We also s...
متن کاملExpression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure.
The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. Here, we profile global gene expression during optic fissure closure using laser capture microdissected (LCM) tissue from the margins of the fissure. From these data, we identify a unique role for the C(2)H(2) zinc finger proteins Nlz1 and Nlz2 in normal fissure closure. Gene knock...
متن کاملCadherin-Mediated Cell Adhesion Is Critical for the Closing of the Mouse Optic Fissure
Coloboma is a congenital disease that contributes significantly to childhood blindness. It results from the failure in closing the optic fissure, a transient opening on the ventral side of the developing eye. Although human and mouse genetic studies have identified a number of genes associated with coloboma, the detailed cellular mechanisms underlying the optic fissure closure and coloboma form...
متن کاملThe Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk
During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in...
متن کاملPax proteins and eye development.
Homologous members of the Pax gene family are required for eye development in Drosophila and vertebrates. Despite superficial similarities in the phenotypes of vertebrates with mutations in pax-6 and Drosophila eyeless mutants, it remains uncertain whether the two proteins encoded by these genes have comparable functions. The genetic cascade triggered by eyeless leads to eye formation, whereas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 59 3 شماره
صفحات -
تاریخ انتشار 2018